On the Rubin–stark Conjecture for a Special Class of Cm Extensions of Totally Real Number Fields
نویسندگان
چکیده
We use Greither’s recent results on Brumer’s Conjecture to prove Rubin’s integral version of Stark’s Conjecture, up to a power of 2, for an infinite class of CM extensions of totally real number fields, called “nice extensions”. As a consequence, we show that the Brumer–Stark Conjecture is true for “nice extensions”, up to a power of 2.
منابع مشابه
Hecke Characters and the K–theory of Totally Real and Cm Number Fields
Let F/K be an abelian extension of number fields with F either CM or totally real and K totally real. If F is CM and the BrumerStark conjecture holds for F/K, we construct a family of G(F/K)–equivariant Hecke characters for F with infinite type equal to a special value of certain G(F/K)–equivariant L–functions. Using results of Greither–Popescu [19] on the Brumer–Stark conjecture we construct l...
متن کاملStark's conjecture over complex cubic number fields
Systematic computation of Stark units over nontotally real base fields is carried out for the first time. Since the information provided by Stark’s conjecture is significantly less in this situation than the information provided over totally real base fields, new techniques are required. Precomputing Stark units in relative quadratic extensions (where the conjecture is already known to hold) an...
متن کاملNumerical Verification of the Brumer-Stark Conjecture
The construction of group ring elements that annihilate the ideal class groups of totally complex abelian extensions of Q is classical and goes back to work of Kummer and Stickelberger. A generalization to totally complex abelian extensions of totally real number fields was formulated by Brumer. Brumer’s formulation fits into a more general framework known as the Brumer-Stark conjecture. We wil...
متن کاملComputing Stark units for totally real cubic fields
A method for computing provably accurate values of partial zeta functions is used to numerically confirm the rank one abelian Stark Conjecture for some totally real cubic fields of discriminant less than 50000. The results of these computations are used to provide explicit Hilbert class fields and some ray class fields for the cubic extensions.
متن کاملON THE p-ADIC STARK CONJECTURE AT s = 1 AND APPLICATIONS
Let E/F be a finite Galois extension of totally real number fields and let p be a prime. The ‘p-adic Stark conjecture at s = 1’ relates the leading terms at s = 1 of p-adic Artin L-functions to those of the complex Artin L-functions attached to E/F . We prove this conjecture unconditionally when E/Q is abelian. Moreover, we also show that for certain non-abelian extensions E/F the p-adic Stark ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007